Blends of Poly-(E-caprolactone) and Polysaccharides in Tissue Engineering Applications
نویسندگان
چکیده
Bioartificial blends of poly-( -caprolactone) (PCL) with a polysaccharide (starch, S; dextran, D; or gellan, G) (PCL/S, PCL/D, PCL/G 90.9/9.1 wt ratio) were prepared by a solution-precipitation technique and widely characterized by differential scanning calorimetry analysis (DSC), Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), optical microscopy (OM), wide-angle X-ray diffraction analysis (WAXD), and thermogravimetry (TGA). DSC showed that the polysaccharide reduced the crystallinity of PCL and had a nucleation effect, which was also confirmed by OM analysis. Hoffman-Weeks analysis was performed on PCL and blend samples allowing calculation of their equilibrium melting temperatures (Tm 0 ). WAXD showed that the crystalline unit cell type was the same for PCL and blends. FTIR-ATR did not evidence interactions between blend components. Thermal stability was affected by the type of polysaccharide. Microparticles (<125 μm) were produced from blends by cryogenical milling and characterized by scanning electron microscopy analysis (SEM). Selective laser sintering (SLS), a new rapid prototyping technology for scaffold fabrication, was applied to sinter blend microparticles according to a PC-designed two-dimensional geometry (strips and 2 × 2 mm2 square-meshed grids). The optimal experimental conditions for sintering were established and laser beam parameters (beam speed, BS, and power, P) were found for each blend composition. Morphology of sintered objects was analyzed by SEM and found to be dependent on the morphology of the sintered powders. Sintered samples were analyzed by chemical imaging (CI), FTIR-ATR, DSC, and contact angle analysis. No evidence of the occurrence of degradation phenomena was found by FTIR-ATR for sintered samples, whereas DSC parameters of PCL and blends showed changes which could be attributed to some molecular weight decrease of PCL during sintering. CI of sintered samples showed that the polysaccharide phase was homogeneously dispersed within the PCL matrix, with the only exception being the PCL/D blend. The contact angle analysis showed that all samples were hydrophilic. Fibroblasts were then seeded on scaffolds to evaluate the rate and the extent of cell adhesion and the effect of the polysaccharides (S, D, G) on the bioactivity of the PCL-based blends.
منابع مشابه
Preparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite
Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the...
متن کاملEnzymatic degradation of Poly (ε-Caprolactone) and Starch blends bontaining SiO2 nanoparticle by Amyloglucosidase and α-Amylase
The aims of the study were to investigate the effect of poly(ε -caprolactone) (PCL) and nano- SiO2 within the thermoplastic starch (TPS) blends on the rate and extent of starch enzymatic hydrolysis using enzymes α-amylase and amyloglucosidase. The results of this study have revealed that blends with nano-SiO2 content at 6 wt% exhibited a significantly reduced rate and exte...
متن کاملEnzymatic degradation of Poly (ε-Caprolactone) and Starch blends bontaining SiO2 nanoparticle by Amyloglucosidase and α-Amylase
The aims of the study were to investigate the effect of poly(ε -caprolactone) (PCL) and nano- SiO2 within the thermoplastic starch (TPS) blends on the rate and extent of starch enzymatic hydrolysis using enzymes α-amylase and amyloglucosidase. The results of this study have revealed that blends with nano-SiO2 content at 6 wt% exhibited a significantly reduced rate and exte...
متن کاملThe Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold
Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...
متن کاملFabrication of Poly(ε-Caprolactone), Hydrophilic and β-Tricalcium Phosphate Layer- by -Layer Nanofibrous Scaffolds for Tissue Engineering
In this study, using biodegradable polymers, nanofiberouse scaffolds were fabricated from the layer-by-layer electrospinning method, including two layer that poly (ε-caprolactone), polyvinylpyrrolidone deposited at first layer and poly (ε-caprolactone), polyvinyl alcohol , β-tricalcium phosphate at latter. After prepration of scaffolds, scanning electron microscopy (SEM), swelling, porosity, me...
متن کامل